博彩-玩博彩策略论坛_百家乐开户_全讯网hg8599.com(中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

千亿百家乐官网的玩法技巧和规则| 皇宝国际网址| 百家乐1个人| 百家乐的路单怎样看| 百家乐游戏免费下| k7娱乐| 网上玩百家乐有钱| 南靖县| 圣淘沙百家乐现金网| 临沭县| 正品百家乐网站| 百家乐开庄概率| 马牌娱乐城| 电脑打百家乐怎么赢| 速博网上娱乐| 百家乐群1188999| 百家乐官网投注网站是多少| 大发888怎么申请账号| 百家乐官网博赌场娱乐网规则 | 百家乐官网游戏合法吗| 风水做生意房漏水| 年辖:市辖区| 致胜百家乐的玩法技巧和规则| 册亨县| 威尼斯人娱乐城003| 百家乐官网分析仪有真的吗| 足球现金网开户| 百家乐陷阱| 南京百家乐官网赌博现场被 | 百家乐官网陷阱| 百家乐真人游戏网| 澳门百家乐官网赢钱秘诀| 大发888大发888体育| 网上百家乐大赢家筹码| 百家乐官网出千桌| 百家乐官网赌经| 海滨湾国际娱乐城| 百家乐龙虎扑克| 百家乐如何睇路| 大丰收百家乐官网的玩法技巧和规则 | A8百家乐的玩法技巧和规则|